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Abstract. Despite an iterative workflow and common characteristics,
board game design differs from its video game counterpart in the tasks
and frequency with which digital technologies are leveraged. This study
presents “Prototypical”, a software application explicitly intended to
support the board game design process. “Prototypical” provides mod-
elling, simulation and analysis features for prototyping and developing
individual board game mechanics. Three examples demonstrate its cur-
rent capabilities and the performance of the Monte-Carlo Tree Search
artificial intelligence agent, while a user study involving five participants
and the System Usability Scale survey identifies the need for user inter-
face improvements.

1 Introduction

With the increasing popularity and commercial success of video games [1], the
terms game design and game development are often used in the context of soft-
ware. There is an abundance of choice when it comes to technologies meant
to support the creation of digital games, ranging from game engines such as
Unity [2] and Unreal Engine [3] to digital asset creation software such as Blender [4].
As inherently digital media, video games require the use of software during de-
velopment. When it comes to commercial board games, however, the opposite
seems true – while similarly iterative and ludological, board game design relies
on paper, human playtesters and analog methods [5].

This research explores how a software application might assist the board
game designer during the development process. “Prototypical” supports fea-
tures to model, simulate, inspect and potentially balance mechanics of a design
during the early prototyping phase. This is accomplished through the input of
information about game components, component state and interactions, success
conditions and simulation parameters. Simulations are performed and the result-
ing data can be inspected and visualized through generated charts. This work
aims to assess the potential of these features through several examples and a
user study.

2 Related work

When discussing the game development process, fundamental characteristics in-
herent to games of all types should be acknowledged. [6] provided an abstract
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analysis of games and presented a rules typology which applies to all kinds.
Reasons for playtesting were identified and a link between game rules and game-
play was described. [7] provided examples of common playtesting approaches
for games and ways to recognize and address gameplay imbalances. The Game
Experience Questionnaire was seen to be effective for measuring user experience
in digital games [8] and similar efforts include Riot Games’ use of quantitative
game data to optimize player experience [9].

The intersection of artificial intelligence and games led to a significant body of
research. Objective Monte-Carlo [10] incorporated move-selection and backprop-
agation improvements into the existing software Mango [11] and Monte-Carlo
Tree Search (MCTS) was originally proposed as a general game-playing artificial
intelligence framework [12]. An MCTS agent for the full rule set of “7 Wonders”
performed better than a standard rule-based AI agent [13] and performance of
MCTS agents was compared for the game “Ticket to Ride” [14]. Several im-
provements found in “Prototypical”, such as discretization and chance events,
were based on this work.

As the complexity and performance of game-playing AI agents grew, so did
attempts to incorporate them into software and the game design process. Build-
ing on previous projects involving AI and the game of Go, [15] presented an open-
source software framework to develop full-information two-player board game
agents using game-independent MCTS. [16] proposed seven different strategies
complementary to playtest data in which AI and visualization techniques might
help a game designer to extract knowledge from a game design. It was shown
that game traces can be used for tracking game state information, debugging
and improving designer understanding a given design.

[17] studied the card game “Dominion” and showed that specific cards con-
tribute to the perceived game balance, regardless of player strategy. [18] designed
and implemented a digital card game, using an AI agent to playtest and pro-
gressively modify game components. [19] used an AI agent-based approach with
A* and MCTS to model four distinct playing styles of the game Ticket to Ride,
identifying two game states not covered by the game rules and demonstrating
that small modifications to game entities could drastically effect strategies and
gameplay. [20] recognized the possibility of a future “robust system that aids
modern board game designers”.

An overview of several software applications which can be used in the con-
text of board game development will now be provided. Some entries may be
used for more than one objective, but it is helpful to group them according to
those which support the game development process or assist playing digital game
implementations and those which do both.

The Machinations framework offers a web-based visual programming lan-
guage to generate game simulation flow charts and view related information.
It does not require programming knowledge and is Turing-complete, utilizing
nine node types and two connection types for its economy-based flowchart per-
spective [21]. Specific game parameters can be monitored during random or
Monte-Carlo-based simulations using generated charts (e.g. histogram).
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Boardgame Lab allows the user to prototype and playtest tabletop games
through three main focus areas of prototyping, playtesting and automation [22].
Iterary [23] provides basic prototyping tools and allows the user to model limited
game mechanics and simulate results. Tabletopia [24] is a virtual tabletop system
without rules enforcement which provides tools to assist in designing, playing
and publishing board games using a graphical interface. Tabletop Simulator [25]
is similar but rendered in a 3D environment and can be easily used for proto-
typing [26]. Vassal [27] and ZunTzu [28] are tabletop game engines, popular for
playing community-made digital implementations of physical games. Both ap-
plications facilitate play of digital versions of existing physical games but can be
potentially used for digital prototypes. BoardGameGeek community members
discussed applications to assist creation of physical board game components for
early prototypes [29]. nanDECK [30] and Squib [31] aim to speed up the design
and creation process of physical cards.

3 Prototypical – A Board Game Development Framework

Without requiring programming knowledge, “Prototypical” can help the user
model and simulate individual game mechanics by declaring game components,
actions, conditions and simulation parameters. The corresponding objects are
known in the software as components, actions, conditions and execution con-
texts, respectively. This object-based approach to representing game elements is
facilitated by a graphical user interface. Similar to lambda expressions in pro-
gramming, some objects have variable bindings evaluated only during gameplay
simulations.

The user can view intermediate game states and generate graphs to visualize
changes in property values or expressions over time for one or multiple simula-
tions. Adjustments to modeled components and behavior can be made “on the
fly” to allow the game designer to iteratively test and revise assumptions, as
done in conventional development and playtesting. Simulations are referred to
as executions and either a random or a heuristic UCT-based Monte-Carlo tree
search agent can provide decision-making. An execution yields a result set of
game states called frames, where each contains the game state before and after
a gameplay event has taken place.

3.1 Examples

Three examples were implemented to demonstrate capabilities of the software.
“Movement Points” covers a proposed card-based mechanic for determining
player resources. “Polis: Rise of the City State” focuses on the combat me-
chanic from a board game currently in active development. The last example
uses the game of “Tic-tac-toe” to demonstrate AI agent performance and po-
tential support in the software for complete rule sets. It should be noted that
words corresponding to entities from “Prototypical” will be italicized and literal
values will be in bold font.
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Movement Points This proposed game mechanic determined a player move-
ment resource each turn through card values. A deck contained eighteen cards,
each with a move value according to the initial distribution in Table 1. Each
player randomly drew a card, allocating the corresponding number of movement
points. Drawn cards were not added back into the deck and gameplay ended once
the deck was empty. This example involved modeling the necessary entities, run-
ning simulations, making design modifications and iterating until a satisfactory
result was achieved. Thirty executions were required in total, with modifications
made after the first and second sets of ten executions. There was one possible
action per player each turn when determining movement score and the Random
AI agent was used for decision-making.

Table 1: Initial distribution of move values (Movement Points)
move Value Quantity

0 6

1 6

2 6

Polis: Rise of the City State In “Polis: Rise of the City State”, players
research technologies, construct buildings and leverage military might to conquer
territories in the hopes of founding the best empire, measured by victory points.
Military power is represented using meeples, while technology and buildings take
the form of cards. Regions exist in a shared location at the center of the game
board and combat occurs when meeples belonging to both players have been
placed in a shared region.

In the example, each player selected a card from the corresponding hand and
the vp value of the card became a combat modifier. The modifier was added to
the respective player meeple count property, resulting in a total score where the
highest was the winner. Rounds proceeded until no cards remained in the draw
deck.

According to the designer, the combat system had not presented itself as a
dynamic or interesting user experience in previous playtesting sessions. A sense
of thrill was to be achieved by iteratively modifying the composition of the card
deck until the simulation data pointed towards greater variation of observed
combat outcomes. The range of the difference between player scores was permit-
ted to increase between turns but the average difference across all simulations
was permitted to change only slightly. Described differently, the outcomes from
one combat round to the next were expected become more disparate, but nei-
ther player should have gained an inherent asymmetrical advantage due to the
modifications. The vp property of each card was set according to the initial dis-
tribution outlined in Figure 1 (provided by the designer) and fifty simulations
were carried out iteratively in sets of ten, where component changes were made
at each interval and the generated charts referenced.
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Fig. 1: Original card value distribution in Polis

Tic-tac-toe Tic-tac-toe was implemented to demonstrate that the software
can support complete rule-sets and to observe performance of the MCTS agent.
The 3x3 grid was modeled such that location numbers increased from left to
right and top to bottom, as seen in Table 2. No iterative changes were made
to the design itself. This example used a known game design to demonstrate
the performance of the MCTS agent so that sensible gameplay moves and poor
strategic choices were easily identifiable during state inspection. All necessary
elements were modeled in and executions were performed with MCTS agents
playing against each another. Performance was observed by modifying the MCTS
iteration count parameter and recording changes in winning player results, where
draw outcomes would indicated consistent decision-making performance. Sixty

Table 2: Grid layout of 3x3 Tic-tac-toe board
field 0 field 1 field 2

field 3 field 4 field 5

field 6 field 7 field 8

executions were run in total, each corresponding to a specific value of the MCTS
iterations parameter, also referred to as playouts or playout count. The execution
count per set varied. The winning player or draw result was summed across data
sets and playout parameter count. Values of 50, 500 and 1000 were used, where
twenty executions were performed for each. The twenty which made use of 50
playouts were broken into two sets of ten sequential executions, while those using
500 playouts were divided into one set of ten and two sets of five. For the 1000
playouts set, two sets of ten were again used.

3.2 User Trials

A user study was conducted to measure the user experience of the software inter-
face. The goal was to present and explain features and estimate its utility through
participant interviews. Another purpose was to solicit feedback and considera-
tions for future work. The target demographic was individuals who identified as
board game designers or players. For the latter, the individual willingly partici-
pated in a board game with others, whether regularly or occasionally. The first
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implies a frequency of once or more per month, while the latter indicates at least
once per year.

Five sessions took place individually over the course of two weeks. Each be-
gan with a short explanation about the intended use of Prototypical, followed
by a demonstration of the example from Section 3.1. The user was instructed to
explore the software features and ask questions. It was then requested that the
example was modified towards what the participant considered a more-balanced
or interesting design. Some users created additional cards, while others only mod-
ified component property values. All participants asked questions and required
additional instruction.

To qualitatively measure these experiences, users filled out the System Us-
ability Scale (SUS) survey. The SUS is a Likert scale with ten statements, meant
to gauge subjectively the usability of a given system. Answers range from one to
five (inclusive), where one indicates that the participant strongly disagrees with
the given statement and a score of five indicates that the user strongly agrees.
The survey was presented electronically without a time limit and the results
were translated into scores out of 100 using [32].

3.3 Hardware and Software

Examples were implemented on an Apple MacBook Pro 2019 laptop with In-
tel i7 2.8 GHz Quad-Core processor, 16 GB of 2133 MHz DDR3 RAM, Intel
Iris Plus Graphics 655 and Mac OS 11.4. The IntelliJ (2020.1.1-2021.1.1) IDE
with relevant plugins was used for both development and testing, while the web
application itself was run using the Chrome (83.0-93.0) browser.

4 Results and Discussion

The software was successfully used to model game concepts and simulate playtest-
ing of the example mechanics without human participants. It visualized subsets
of the simulation data and displayed changes in game state parameters and
potential trends. Both individual mechanics and a full simple rule set for two-
player games were implemented, showing flexibility in how the software could
be applied.

The software appeared potentially useful to game designers by providing new
ways to view game state information, such as inspection and tracking of individ-
ual properties throughout simulated gameplay. This type of comparative data is
expected to inform the designer during development, making obvious which de-
sign changes caused large observable differences in the profile of the charted prop-
erty. With the expectation that more information promotes improved decision-
making, the utility of Prototypical in this context is evident. There was also
a possibility to partially replace the initial need for human playtesters, saving
resources in the early stages of development.

Table 3 outlines the number of objects created when modeling the me-
chanic(s) of each example. “Movement Points” required the fewest and was the
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simplest mechanic of the three to implement. The second example required the
most components but the fewest conditions, needing only one which was always
met and another for tracking the current round number. It is unsurprising that
“Tic-tac-toe” used the most conditions, as it contained the entire rule set of
the game and conditions were necessary for every potential winning board state
per player (e.g. fields 0, 1 and 2 containing the same player value). While up

Table 3: Object counts required to implement each example
component action condition Total

Movement Points 23 10 3 36

Polis: Rise of 104 15 2 121
the City State

Tic-tac-toe 12 18 77 107

to fifty simulations were taken into consideration when analyzing results, there
is no indication that this adequately sampled the game space of the first two
mechanics. It is possible that results and assumptions in these examples did
not reflect the normal outcomes of the games, until compared to real playtest
data. Additionally, the user study demonstrated that the current user interface
is inadequate for practical use.

4.1 Movement Points

A chart was generated to display the average movement score of the players for
the first set of simulations. The values seen in Figures 2 using the initial distri-
bution were deemed too low and modifications to the card values were made.
Six cards with a value of 0 were changed to 2. Ten more executions were per-
formed and corresponding charts created. While the charted average score at
this interval displayed five directional changes and a larger range of values, it
still appeared to remain the same or very close to the preceding or subsequent
value across significant segments of the execution. These characteristics can be
observed through the shape of the line charts from Figures 3. Six card values
of 3 were changed to 5. Updated charts were again generated but this time the
displayed trends were sufficient in both range and shape. Both first and second
player charted average score values displayed six directional changes, which was
two more than the originals. These plotted average move scores had been notice-
ably altered, as seen in Figures 4, done with the expectation that these changes
would be observable in user experience and gameplay of the encompassing game.
It is expected that a dynamic line chart would yield correspondingly dynamic
gameplay possibilities.

This mechanic was suitable for Prototypical because of low rules complexity
and component count. Gameplay-altering changes were easily made and modify-
ing few values led to noticeable effects on game state. Changes involved updating
a single property, which made it simple to view both the values of themove prop-
erty for each frame of an execution result data set, but also across multiples. The
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(a) Player 1 (b) Player 2

Fig. 2: Movement Points average score frames 1-10

(a) Player 1 (b) Player 2

Fig. 3: Movement Points average score frames 11-20

average was displayed on a line graph and could be superimposed on other data.
The visualized properties demonstrated that design changes had taken effect,
but did not clarify to what extent. The example showed that Prototypical could
assist the designer make observations and hypotheses about the current state
of a game design but it could not guide the development process (e.g. suggest
potential changes). A clearer characterization of the direct relationship between
objective simulation data and the subjective user experience is desired.

4.2 Polis

Ten executions were performed at the start, as seen in Figures 5. Fifteen vp
values were changed from 1 to 0 to lower the minimum possible score. After ten
additional simulations, this was estimated to be too excessive and was partially
reverted by changing ten card values from 0 back to 1. This was done because
the range of observed values was reduced such that the gameplay impact of the
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(a) Player 1 (b) Player 2

Fig. 4: Movement Points average score frames 21-30

combat mechanic became questionable. Thirteen Cards were also changed from 2
to 3 to increase the probability of obtaining a higher sum. Ten further executions
led to observed results centered too closely on mid-range values, so eight card
values were changed from 3 to 4. A higher upper bound was once again desired,
so four card values were changed from 4 to 5, followed by ten executions and
the final changes of two card values from 4 to 7. The final values can be seen
in Figures 6. The range of observed values for the first player summed score
increased by two from six in the first execution set to eight in the last. The
change was even more pronounced for the second player, increasing by four from
an initial range of seven to a final observed range of eleven.

(a) Player 1 (b) Player 2

Fig. 5: Polis score sum frames 1-10

The component modifications in this example did not significantly change
the difference between observed scores summed across multiple executions. This
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(a) Player 1 (b) Player 2

Fig. 6: Polis score sum frames 41-50

value in first and second player scores summed at each frame for executions 1
through 10 was 125.25 and 128.33, respectively. The final ten (41-50) yielded a
difference of 2.75. This fulfills the initial condition that no modifications may
significantly increase the discrepancy in opposing scores. The generated charts
show that it is possible to unify multiple game state properties and associate
them with a single visualization. The charts were used to display the total score
of each player at each frame and for multiple executions. However, the combat
score itself was comprised of a combination of the meeple count and card victory
point value, demonstrating that it is possible to simultaneously track multiple
elements of game state. This functionality was desired by the designer and was
the motivation for suggesting this example.

4.3 Tic-tac-toe

MCTS AI agent performance benchmark data, including the respective mean
time per playout set, is seen in Table 4. All ended with a draw result and end
game states from ten executions were randomly observed without anomalies or
rules errors. The playout values of 50, 500 and 1000 were chosen to explore the
relationship between higher playout values and superior performance. The latter
comes at the expense of time and computing resources, where values less than
50 produced unsatisfactory results. The chosen values were expected to estimate
performance for normal use cases, balancing performance and resource costs, and
no specific boundaries for these parameters were discovered or otherwise tested.

While optimal moves were not used as a benchmark, the random sampling
of performed moves did not reveal obviously strategically sub-par choices which
would indicate poor performance. Additionally, the results from Table 4 indi-
cated consistent decision-making behavior. Inconsistent win rates would have
indicated unpredictability from one or both opposing agents, implying an incor-
rect implementation [33]. Performance differences at these levels in the bench-
marks were not observed but the execution run time required increased linearly
with the configured number of MCTS iterations. This was expected, as higher
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decision-making performance requires more iterations per selected move, result-
ing in longer computing time.

This example showed that Prototypical can potentially support a full rule
set and simulate an entire game using AI agents. The simplicity of the game and
the small board size made it random inspection of moves possible. It was not,
however, a useful demonstration of Prototypical during the development process
because the aim was to demonstrate modelling capabilities of the software and
its AI agent performance.

Table 4: Tic-tac-toe win rates and execution time benchmarks.
Pl. Draw P1 Win P2 Win Qty. E T(s) T/E (s)

50 20 0 0 20 150.07 7.50

500 20 0 0 20 266.73 13.34

1000 20 0 0 20 515.13 25.76

4.4 User Trials

The results of the survey can be seen in Table 5. The median score was 62.5,
where the overall range was between 50 and 75, inclusive. The mean score was
61.5, which indicates that the usability of the current Prototypical interface is
“poor” (see Figure 7).

The user study and SUS surveys revealed both successes and failures of the
user interface. The time required to explain the premise and functionality of the
software was negligible, implying that its novel approach to modelling is intu-
itive. While participants asked questions throughout the trial, no assessments
of comprehension were made. The results of the survey itself indicated deficits
in the UI and the low average score implies that improvements must be made
before the software can be used in a practical context. Other areas of concern
are the ineffective handling of games with imperfect information and stochas-
tic events. While chance nodes handle select situations well, The inability to
comprehensively handle imperfect information limits the potentially supported
games.

Fig. 7: System Usability Scale Rubric
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Table 5: System Usability Scale scores from five participants.
Score A Score B Score C Score D Score E

65 55 62.5 50 75

5 Conclusion

This work investigates how the “Prototypical” software application might assist
the board game designer in the context of an iterative development process. It is
a board game development framework with a graphical user interface, support-
ing modelling, simulation and analysis of game mechanics. The examples from
Section 4 demonstrated several features and revealed inadequacies of the user
interface.

The “Movement Points” and “Polis: Rise of the City State” examples showed
how a simple card-based resource mechanic could be modified across several
iterations and it was clear from generated charts how the movement or score
properties evolved throughout the performed simulations with respect to the
implemented changes. Differences in the observed values or ranges was evident
through the shape of the generated line charts, providing the developer with the
ability to track and visualize evolving elements of game state.

The final example further demonstrated flexibility of the software through
its ability to support complete rule sets. It measured the performance of the
UCT-based MCTS AI agent, which was found to be consistent for varied MCTS
loop parameter values. Random inspection of moves did not reveal strategically
unsound choices and the chosen moves resembled the skill of a human player.

Although using the software appeared intuitive for the study participants,
the complexity was higher than desired. Future efforts have the potential to
fix these issues and implement additional features, making it a valuable tool
for developing board game mechanics. Increased player counts, additional game
types, improved UI workflows and stability improvements are possible focus
areas. “Prototypical” controls a small set of features but demonstrates potential
to iteratively assist the designer to inspect simulated playtest data and search
for trends in evolving game state. At the very least, it serves as inspiration for
what a system to aid modern board game designers might provide.
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